台灣心肌梗塞學院 TAMIS academy 黑白心廚二十四道饗宴(第二十道-葛根養勢香滷鴨)

主題: Post-AHA Update Shaping the Course of Atherosclerosis: When Treatment Meets Timing

時間: 2025年12月18日星期四19:00-20:45

主辦單位:台灣心肌梗塞學會

協辦單位:台灣醫療品質協會、臺北醫學大學附設醫院、國際血流動力學醫學學會

- 線上報名系統:https://us02web.zoom.us/webinar/register/4917617233080/WN_pUCM_5pjRMS_kVwMB94G3g#/registration
- 繼續教育積分簽到表: https://forms.gle/9DP9Z5ZtQzhMGMdh8
- 繼續教育積分簽退表暨滿意度調查表:

https://forms.gle/tSEsEZdeSMaD1jdf7

注意事項:課後需填寫滿意度調查表才給予積分

Time 時間	Content 主題	Speaker 演講人	Moderator 主持人
19:00-19:35	At the Heart of the Present: The Current Landscape of ASCVD in Taiwan	臺北榮民總醫院重	學會常務理事暨學術主委 恒症醫學部重症加護內科主任 吳承學醫師 neng-Hsueh Wu
19:35-20:10	Beyond Today's Targets: The Continuing Evolution of Lipid Management	台灣心肌梗塞學會副秘書長暨國際主委 臺北醫學大學附設醫院研究部副主任 徐千彝醫師 Dr. Chien-Yi Hsu	台灣心肌梗塞學會理事暨學術委員 臺北榮民總醫院心臟內科主治醫師 黃柏勳醫師 Dr. Po-Hsun Huang
20:10-20:45	Ahead of Tomorrow's Risk: Scientific Perspectives on Early Prevention	新光醫院心臟內科主治醫師 常敏之醫師 Dr. Min-Ji Charng	台灣心肌梗塞學會常務理事暨研究委員暨政策委員 林口長庚醫院心臟內科系主任 謝宜璋醫師 Dr. I-Chang Hsieh

Time	Speaker	Topic	English Abstract
19:00-19:35)-19:35 吳成學 At the Heart of the		Atherosclerotic cardiovascular disease (ASCVD) remains a heavy burden in
		Present: The Current	Taiwan. In 2024, heart disease was the second leading cause of death, and
		Landscape of ASCVD	cerebrovascular disease ranked fourth, reflecting persistent arterial disease
		in Taiwan	across the population.
			Despite universal coverage, LDL-C goal attainment is suboptimal. Historically,
			only ~54% of patients with established ASCVD achieved LDL-C <100 mg/dL.
			National guidance now targets <70 mg/dL for CAD/ACS and <55 mg/dL for
			very-high-risk subsets, yet real-world data from a Taiwanese AMI cohort show
			only 59.9% reached <70 mg/dL and 34.1% reached <55 mg/dL during follow-up,
			despite high statin use.
			Implementation is improving. A 2025 national clinical-pathway consensus
			promotes risk-stratified, goal-directed care, and Taiwan's NHI has expanded
			PCSK9 inhibitor reimbursement—lowering the initiation LDL-C threshold from
			135 to 100 mg/dL and extending authorization to 12 months—potentially
			benefiting ~5,000 patients annually.
			Together, these data depict a system poised for progress: a high ASCVD burden,
			clear evidence-based targets, measurable treatment gaps, and newly enabling
			policies. Closing the gap will require earlier detection, systematic follow-up, and
			timely intensification—including combination therapy and PCSK9 use for
			non-attainers—to bend Taiwan's ASCVD curve.

1000000	44-19	I	
19:35-20:10	徐千彝	Beyond Today's	Contemporary management of lipid disorders in acute coronary syndrome (ACS)
		Targets: The	has entered a new era emphasizing both treatment intensity and timing. Despite
		Continuing Evolution	widespread statin use, real-world data from Taiwan and other Asian cohorts
		of Lipid Management	indicate that over 60% of high-risk ASCVD patients fail to achieve the
			recommended LDL-C goal of <55 mg/dL, underscoring persistent therapeutic
			gaps. The 2025 ACC/AHA and ESC lipid guidelines advocate early addition of
			non-statin therapies, including PCSK9 inhibitors, when LDL-C remains ≥70
			mg/dL on maximally tolerated statins, or between 55–69 mg/dL in very high-risk
			individuals.
			Clinical and mechanistic evidence supports early and intensive LDL-C lowering
			after ACS. Trials such as EVOPACS and EVACS demonstrated that initiating
			evolocumab within 24–72 hours of ACS achieves > 60% LDL-C reduction, with
			over 90% of patients reaching guideline targets within 30 days, without
			compromising safety. Early PCSK9 inhibition also stabilizes vulnerable plaques,
			decreases necrotic core content, and mitigates inflammatory and platelet
			activation pathways. Complementary outcomes from FOURIER and registry data
			confirm sustained reductions in major adverse cardiovascular events with early
			and continued therapy.
			These findings collectively advocate a paradigm shift toward rapid and
			aggressive lipid lowering in post-ACS care. Implementing PCSK9 inhibitors such
			as evolocumab in the early hospitalization phase aligns with the principle of
			"strike early and strong", offering the potential to improve both short-term

			stabilization and long-term cardiovascular outcomes through precision timing
			and therapy intensification
	常敏之	Ahead of	Atherosclerotic cardiovascular disease (ASCVD) develops silently over decades,
		Tomorrow' s Risk:	with cumulative exposure to low-density lipoprotein cholesterol (LDL-C) driving
		Scientific	progressive arterial injury. Genetic, epidemiologic, and clinical studies have
		Perspectives on Early	established a log-linear relationship between LDL-C burden and ASCVD risk—
		Prevention	both the magnitude and duration of exposure determine lifetime outcomes. The
			PESA and PROSPECT studies revealed that a substantial proportion of middle-
			aged adults harbor subclinical atherosclerosis or vulnerable plaques despite
			appearing clinically healthy, highlighting that atherosclerosis precedes overt
			myocardial infarction or stroke by many years. Yet, global real-world data, such
20:10-20:45			as from the DA VINCI and SANTORINI studies, show that more than half of high-
20.10-20.43			risk individuals fail to reach current LDL-C targets despite optimized therapy.
			The landmark VESALIUS-CV trial filled a critical evidence gap by demonstrating
			that evolocumab significantly reduced major adverse cardiovascular events in
			high-risk individuals without prior myocardial infarction or stroke—establishing
			the benefit of LDL-C lowering in primary prevention. Together, these findings
			underscore that many "event-free" individuals already exhibit atherosclerotic
			disease or early plaque vulnerability and would benefit from intensified lipid
			management.
			A paradigm shift is warranted—from reactive treatment after clinical events to
			proactive, time-sensitive intervention guided by early imaging and risk

	stratification. Initiating LDL-C lowering in patients with subclinical ASCVD or high-risk features (familial hypercholesterolemia, diabetes, chronic kidney disease, elevated Lp[a]) can mitigate cumulative LDL exposure and alter the natural course of atherosclerosis, reinforcing that <i>earlier control means greater protection</i> .
--	---