Prevalence of Metabolic Syndrome and Its Relationship with Cardiovascular Disease among Hypertensive Patients 55-80 Years of Age

Chun-Hung Su,1,2 Chih-Yuan Fang,3 Jung-Sheng Chen,4 Helen L. Po,5 Li-Ping Chou,6 Chih-Yeng Chiang7 and Kwo-Chang Ueng1,2

Patients with metabolic syndrome (MetS) are at an increased risk for developing cardiovascular disease (CVD). This study sought to assess the prevalence of MetS, and its association with CVD in older hypertensive subjects in Taiwan. We conducted a hospital-based cross-sectional study of 3,472 hypertensive patients age 55-80 years (1,763 men, 1,709 women), from 38 sites across Taiwan from November 2005-December 2006. MetS was defined using the modified criteria of the US National Cholesterol Education Program (NCEP) Adult Treatment Panel III, and the International Diabetes Federation (IDF). CVD included a diagnosis of angina pectoris (AP), myocardial infarction (MI), congestive heart failure (CHF), and stroke. The prevalence of MetS based on the modified NCEP criteria was 73.13% (68.29% in men, 78.12% in women). Use of the revised IDF definition significantly decreased the prevalence to 54.67% (46.63% in men, 62.96% in women). Subjects with MetS defined by IDF, or both criteria, had significantly higher odds ratios (ORs) of AP, CHF and all CVD. ORs of AP, MI, stroke, CHF, and all CVD were all significantly increased in subjects with MetS based on NCEP criteria. Those patients who met the NCEP, but not the IDF criteria, had a significantly elevated OR for MI. In contrast, those who met the IDF, but not the NCEP criteria did not have a significantly elevated OR for any CVD. MetS is highly prevalent in hypertensive patients 55-80 years of age in Taiwan, particularly women. Patients with MetS defined by either criteria have significantly higher ORs for CHF, AP and all CVD than those without MetS. Accordingly, NCEP criteria seems to be more suitable than IDF criteria for estimating cardiovascular risks in this Taiwanese population.

Key Words: Cardiovascular disease • Hypertension • Metabolic syndrome • Prevalence

INTRODUCTION

Metabolic syndrome (MetS) is a cluster of cardiovascular risk factors for cardiovascular disease (CVD), and is associated with increased risk of all-cause and cardiovascular mortality.1–3 High blood pressure is a classical feature of MetS, and MetS is present in up to one third of hypertensive patients in western populations.4,5 The increasing prevalence of MetS due to the marked shift in lifestyle in Asian countries, caused by economic growth, affluence, urbanization, and westernization of diet, may lead to an increase in hypertension-induced CVD and its complications. Current international guidelines recommend MetS screening of all...
hypertensive patients for the identification of persons at high, long-term risk of CVD. Thus, identification of high-risk patients with hypertension may contribute to the development of more effective strategies for decreasing hypertension-related CVD risk.

Two definitions of MetS have been proposed by the World Health Organization (WHO) and the US National Cholesterol Education Program Adult Treatment Panel III (NCEP ATP III), in 1999 and 2001, respectively. Recently, the International Diabetes Federation (IDF) recommended a new definition of MetS, that includes central obesity as a prerequisite and lowers the threshold for impaired fasting glucose (IFG) from 110 to 100 mg/dl. However, the impact of changing the criteria for MetS has not been rigorously evaluated, and its wisdom has been called into question due to fears it could increase the population at risk, particularly in Asian subjects. The definition of abdominal obesity was modified according to the 2000 WHO Asia Pacific Guidelines as a waist circumference ≥ 90 cm in men and ≥ 80 cm in women, because the absolute risk of diabetes and CVD is relatively higher in an Asian subject for a given waist circumference. The modified definition of abdominal obesity was also applied to modified NCEP and revised IDF criteria in China and Taiwan.

To date, very few studies have compared the prevalence defined by the modified NCEP ATP III criteria with that prevalence defined by the revised IDF criteria in hypertensive subjects in Asia. Indeed, the impact of MetS on CVD outcome in this hypertensive cohort has not been studied extensively. In this study, we investigated the prevalence of MetS as defined by NCEP ATP III and IDF criteria, and examined the relationship between MetS and CVD in a hospital-based survey of patients 55-80 years of age with hypertension in Taiwan.

METHODS

Study population

This study was a prospective, nationwide, cross-sectional, hospital-based, multicenter survey conducted in 38 sites across Taiwan from November 2005-December 2006. A total of 3,472 subjects 55-80 years of age (1,763 men, 1,709 women) were enrolled from the outpatient clinics of the cardiology and neurology departments of participating study sites. To be included, participants were diagnosed with hypertension, defined as either currently receiving treatment for hypertension, or a blood pressure ≥ 140/90 mm Hg, as determined using standardized techniques after subjects had been in a seated position for at least 10 min. Participants were required to have the capacity to understand and answer the health survey questionnaire used in this study, and be willing to sign an informed consent form. The protocol was approved by the ethics committee of each participating center, and prior written informed consent was obtained from all patients.

Collection of data

All data were collected by trained and certified staff. After providing their informed consent, all patients underwent the following procedures: (1) accurate medical history (implemented by a structured questionnaire on demographic and clinical characteristics, including questions concerning duration of hypertension, smoking status, and physical exercise level); (2) physical examination; (3) blood pressure measurement; (4) standard 12-lead ECG; and (5) blood chemistry examination after an overnight fast, including measurement of serum lipids (total cholesterol, triglycerides, high-density lipoprotein cholesterol [HDL-C], low-density lipoprotein cholesterol [LDL-C]) and glucose using standard enzymatic methods.

Anthropometric measures

Body mass index (BMI) and anthropometric measurements, i.e., height (without shoes) and weight (with heavy clothing removed) were obtained from the subjects. BMI cutoffs were adopted as suggested by the Department of Health in Taiwan, and subjects were categorized as normal (18.5 kg/m² ≤ BMI < 24 kg/m²), overweight (24 kg/m² ≤ BMI < 27 kg/m²), and obese (BMI ≥ 27 kg/m²). Waist circumference was measured with a soft tape at the level of the umbilicus, at the end of a relaxed expiration while subjects were standing.

Definition of MetS

The diagnosis of MetS was established based on two definitions, the modified NCEP-ATP-III definition and the revised MS-IDF (MetS definition by the IDF criteria,
Chinese version) definition, incorporating the lower threshold for IFG (≥ 100 mg/dl). Because all participants were hypertensive patients, the first definition of MetS, according to the modified NCEP-ATP III criteria for Asians, required meeting at least two of the following four component risk factors: (1) waist circumference ≥ 90 cm for men and ≥ 80 cm for women; (2) triglycerides ≥ 150 mg/dl or current use of lipid lowering medications; (3) HDL-C < 40 mg/dl for men and < 50 mg/dl for women; and (4) fasting plasma glucose ≥ 100 mg/dl or current use of antihyperglycemic drugs. The second definition of MetS used the revised IDF criteria: a hypertensive subject was considered to have MetS if they had abdominal obesity (waist circumference ≥ 90 cm in men, ≥ 80 cm in women for Chinese people) plus any one of the remaining three factors (the criteria for hypertriglyceridemia and reduced HDL-C were the same as for NCEP-ATP III, but the criterion for raised fasting plasma glucose was ≥ 100 mg/dl). We did not implement the WHO criteria for MetS because it requires oral glucose tolerance testing, which was not performed in our study cohort. We did not include lipid-lowering therapy in the criteria, because of the inability to collect accurate information regarding this parameter by personal interview.

Statistical analysis

Data were expressed as means ± standard deviation, or as the number of cases and percent (percentage) of individuals affected. Age and sex-specific prevalence of MetS was determined using modified NCEP and revised IDF criteria. The t test and χ² test were used to examine differences in continuous and categorical variables, respectively, between men and women. Multivariate logistic regression analyses were used to calculate odds ratios (ORs) and their 95% confidence intervals (CI), with adjustment for potential confounders such as age, sex, smoking, physical exercise, and family history of stroke. Calculations were performed using the Statistical Package for the Social Sciences software (version 15, SPSS Inc., Chicago, IL, USA). A value of p < 0.05 was considered statistically significant.

RESULTS

Baseline characteristics

Demographics and characteristics of the 3,472 subjects (1,763 men, 1,709 women) are presented in Table 1. There were significant differences between men and women in most of the covariates. Men had significantly higher rates of physical exercise and smoking, higher waist circumference, BMI, and serum uric acid concentration, were more likely to have a history of coronary artery disease and stroke, and to have received antiplatelet medications. Women had significantly higher systolic blood pressure and serum cholesterol (including LDL-C and HDL-C).

Prevalence of MetS and its components

The proportions of the 3,472 Taiwanese older hypertensive subjects with individual components of MetS are shown in Table 2. Except for pre-existing hypertension, 94.55% and 90.75% of subjects had at least one component of MetS that was identified by modified NCEP criteria and revised IDF criteria, respectively. Most of the participants (about 70%) had one or two additional components of MetS. There was no clear age-related increase in the prevalence of individual components of MetS. In contrast, significant differences between the sexes were observed: women had a higher prevalence of dyslipidemia (low HDL-C), and central obesity. There-
fore, based on both NCEP and IDF criteria, the prevalence of MetS components were higher in women than in men. The prevalence of MetS by modified NCEP criteria was 73.13% (68.29% in men, 78.12% in women). Use of the revised IDF definition significantly decreased the prevalence of MetS to 54.67% (46.63% in men, 62.96% in women).

ORs for MetS by NCEP and IDF criteria associated with CVDs are shown in Table 3. The ORs for AP, MI, stroke, CHF, and all CVD in subjects with MetS using the NCEP criteria were 1.33 (95% CI 1.1-1.62), 2.04 (95% CI 1.38-3.02), 1.4 (95% CI 1.15-1.7), 1.37 (95% CI 1.01-1.85), and 1.4 (95% CI 1.2-1.63), respectively. Corresponding ORs using the IDF criteria were 1.33 (95% CI 1.12-1.57), 0.98 (95% CI 0.74-1.32), 1.12 (95% CI 0.95-1.33), 1.32 (95% CI 1.02-1.71), and 1.23 (95% CI 1.07-1.40), respectively. Subjects with MetS defined by IDF or both criteria, had significantly higher odds of AP, CHF and all CVD. Odds of AP, MI, stroke, CHF, and all CVD were all significantly increased in

Table 3. Demographic, anthropometric, and biochemical characteristics of the subjects

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Men (n = 1763)</th>
<th>Women (n = 1709)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>67.4 ± 7.2</td>
<td>67.3 ± 6.8</td>
<td>0.4910</td>
</tr>
<tr>
<td>Age-adjusted variables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic blood pressure (mm Hg)</td>
<td>136.7 ± 16.0</td>
<td>138.9 ± 16.4</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Diastolic blood pressure (mm Hg)</td>
<td>80.8 ± 10.1</td>
<td>80.7 ± 9.9</td>
<td>0.8957</td>
</tr>
<tr>
<td>Total cholesterol (mg/dl)</td>
<td>191.1 ± 38.1</td>
<td>201.3 ± 39.3</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Triglycerides (mg/dl)</td>
<td>149.8 ± 123.5</td>
<td>151.5 ± 83.1</td>
<td>0.7900</td>
</tr>
<tr>
<td>HDL cholesterol (mg/dl)</td>
<td>46.9 ± 12.6</td>
<td>54.2 ± 14.1</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>LDL cholesterol (mg/dl)</td>
<td>118.5 ± 35.7</td>
<td>123.1 ± 35.7</td>
<td>0.0030</td>
</tr>
<tr>
<td>Fasting glucose (mg/dl)</td>
<td>118.8 ± 41.6</td>
<td>121.1 ± 42.9</td>
<td>0.1136</td>
</tr>
<tr>
<td>Waist circumference (cm)</td>
<td>93.9 ± 9.4</td>
<td>89.9 ± 10.8</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Body mass index</td>
<td>25.9 ± 3.4</td>
<td>26.3 ± 4.0</td>
<td>0.0013</td>
</tr>
<tr>
<td>Physical exercise (number/total)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Does not exercise at all</td>
<td>205/1758 (11.66)</td>
<td>323/1698 (19.02)</td>
<td></td>
</tr>
<tr>
<td>Minimal irregular exercise (< 30 min per week)</td>
<td>497/1758 (28.27)</td>
<td>534/1698 (31.45)</td>
<td></td>
</tr>
<tr>
<td>Regular exercise (> 30 min twice per week)</td>
<td>1056/1758 (60.07)</td>
<td>841/1698 (49.53)</td>
<td></td>
</tr>
<tr>
<td>Duration of hypertension</td>
<td></td>
<td></td>
<td>0.3273</td>
</tr>
<tr>
<td>< 1 year</td>
<td>161 (9.18)</td>
<td>133 (7.80)</td>
<td></td>
</tr>
<tr>
<td>1-5 years</td>
<td>578 (32.95)</td>
<td>562 (32.94)</td>
<td></td>
</tr>
<tr>
<td>> 5 years</td>
<td>1015 (57.87)</td>
<td>1011 (59.26)</td>
<td></td>
</tr>
<tr>
<td>Current smoker (number/total)</td>
<td>448/1758 (25.48)</td>
<td>27/1706 (1.58)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Uric acid (mg/dl)</td>
<td>6.8 ± 2.5</td>
<td>6.0 ± 2.1</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Left ventricular hypertrophy on ECG (number/total)</td>
<td>115/1753 (6.56)</td>
<td>90/1695 (5.31)</td>
<td>0.1206</td>
</tr>
<tr>
<td>Disease history (number/total)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family history of stroke</td>
<td>478/1697 (28.17)</td>
<td>414/1654 (25.03)</td>
<td>0.0399</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>496/1748 (28.38)</td>
<td>541/1696 (31.90)</td>
<td>0.0242</td>
</tr>
<tr>
<td>Coronary heart disease</td>
<td>402/1721 (23.36)</td>
<td>342/1678 (20.38)</td>
<td>0.0358</td>
</tr>
<tr>
<td>Stroke</td>
<td>482/1733 (27.81)</td>
<td>232/1691 (13.72)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Medications (number/total)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-hypertension medications</td>
<td>1736/1754 (98.97)</td>
<td>1687/1705 (98.94)</td>
<td>0.9319</td>
</tr>
<tr>
<td>Lipid-lowering medications</td>
<td>447/1763 (25.35)</td>
<td>458/1709 (26.80)</td>
<td>0.3323</td>
</tr>
<tr>
<td>Statins</td>
<td>378/1763 (21.44)</td>
<td>402/1709 (23.52)</td>
<td>0.1417</td>
</tr>
<tr>
<td>Fibrates</td>
<td>73/1763 (4.14)</td>
<td>53/1709 (3.10)</td>
<td>0.1016</td>
</tr>
<tr>
<td>Anti-platelet medications</td>
<td>910/1763 (51.62)</td>
<td>670/1709 (39.20)</td>
<td>< 0.0001</td>
</tr>
</tbody>
</table>

Data are presented as mean ± standard deviation or number with percentage in parentheses. HDL, high-density lipoprotein; LDL, low-density lipoprotein.
Table 2. Age-and sex-specific prevalence of individual components, and the number (%) of components, of metabolic syndrome based on the NCEP and IDF criteria in hypertensive patients 55-80 years of age

<table>
<thead>
<tr>
<th>MetS components other than HTN</th>
<th>Men (50.78%)</th>
<th>Women (49.22%)</th>
<th>Men and women (n = 3472)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>55-64 years</td>
<td>65-74 years</td>
<td>75-80 years</td>
</tr>
<tr>
<td></td>
<td>(n = 649)</td>
<td>(n = 735)</td>
<td>(n = 379)</td>
</tr>
<tr>
<td>Hyperglycemia (glucose ≥ 110 mg/dl)</td>
<td>(42.27%)</td>
<td>(46.22%)</td>
<td>(40.75%)</td>
</tr>
<tr>
<td>Hyperglycemia (glucose ≥ 100 mg/dl)</td>
<td>(62.62%)</td>
<td>(67.26%)</td>
<td>(62.47%)</td>
</tr>
<tr>
<td>Hypertriglyceridemia</td>
<td>(38.37%)</td>
<td>(33.47%)</td>
<td>(23.48%)</td>
</tr>
<tr>
<td>Low HDL cholesterol</td>
<td>(71.03%)</td>
<td>(66.67%)</td>
<td>(60.42%)</td>
</tr>
<tr>
<td>Central obesity by NCEP</td>
<td>(65.49%)</td>
<td>(68.57%)</td>
<td>(63.06%)</td>
</tr>
<tr>
<td>Central obesity by IDF</td>
<td>(62.56%)</td>
<td>(63.39%)</td>
<td>(59.20%)</td>
</tr>
<tr>
<td>Number of components of MetS</td>
<td>(71.03%)</td>
<td>(70.75%)</td>
<td>(58.84%)</td>
</tr>
<tr>
<td>HTN only</td>
<td>(7.09%)</td>
<td>(7.62%)</td>
<td>(8.18%)</td>
</tr>
<tr>
<td>HTN and 1 more</td>
<td>(14.68%)</td>
<td>(16.18%)</td>
<td>(22.86%)</td>
</tr>
<tr>
<td>HTN and 2 more</td>
<td>(20.80%)</td>
<td>(23.22%)</td>
<td>(25.90%)</td>
</tr>
<tr>
<td>HTN and 3 more</td>
<td>(32.05%)</td>
<td>(31.56%)</td>
<td>(28.76%)</td>
</tr>
<tr>
<td>HTN and 4 more</td>
<td>(25.73%)</td>
<td>(27.07%)</td>
<td>(23.75%)</td>
</tr>
<tr>
<td>Numbers of components of MetS</td>
<td>(13.25%)</td>
<td>(12.11%)</td>
<td>(6.33%)</td>
</tr>
<tr>
<td>by IDF</td>
<td>(47.46%)</td>
<td>(48.30%)</td>
<td>(41.95%)</td>
</tr>
</tbody>
</table>

MetS, metabolic syndrome; HTN, hypertension; NCEP, National Cholesterol Education Program; IDF, International Diabetes Federation.
subjects with MetS based on NCEP criteria.

Those who met the NCEP, but not the IDF criteria \((n = 776)\), had a significantly elevated OR for MI \((1.61, 95\% \text{ CI } 1.18-2.21)\). In contrast, those who met the IDF, but not the NCEP criteria \((n = 135)\), did not have significantly elevated ORs for any CVD, and even lower ORs for AP, CHF and all CVD.

DISCUSSION

MetS affects about one in five adults in the United States, and 10-20\% of the adult Chinese population, with a higher prevalence in persons older than 60 years and in certain ethnic groups.\(^{13-15}\) Among an urban Chinese population 30-70 years of age, the previously reported prevalence of MetS was > 26\% when Asian criteria for abdominal obesity were applied.\(^{16}\) Furthermore, in Chinese and Japanese populations, people who have MetS are 3-10 times more likely to develop CVD.\(^{16-18}\) Lin et al.\(^{19}\) reported that MetS was widespread among Taiwanese adults ≥ 40 years of age, and that it has become a serious public health challenge in Taiwan metropolitan areas.

Hypertension is the key component of MetS. A substantial proportion of patients who develop clinically evident hypertension also have insulin resistance. A previous study\(^{20}\) reported that hypertension was linked to MetS through obesity. Indeed, a significantly high prevalence (71.59\%) of central obesity was observed in our subjects. However, a recent cross-sectional study of 15,540 Chinese adults 35-74 years of age showed that waist circumference and BMI had independent effects on the odds of hypertension, dyslipidemia, and MetS in both men and women.\(^{21}\) Both the seventh report of the Joint National Committee\(^{22}\) and the European Society of Hypertension – European Society of Cardiology Guidelines\(^{23}\) emphasize the importance of diagnosing MetS.

Table 3. Odds ratios (95\% confidence intervals) of the history of congestive heart failure, angina, myocardial infarction, prior stroke/transient ischemic attack, and cardiovascular disease as risk factors for metabolic syndrome (MetS) in hypertensive patients \((N = 3472)\)

<table>
<thead>
<tr>
<th>Comparison</th>
<th>MetS by NCEP ((n = 2539))</th>
<th>MetS by IDF ((n = 1898))</th>
<th>MetS only by IDF ((n = 135))</th>
<th>MetS only by NCEP ((n = 776))</th>
<th>MetS by IDF and NCEP ((n = 1763))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congestive heart failure</td>
<td>Yes vs. no</td>
<td>1.365 (1.007-1.850)</td>
<td>1.322 (1.021-1.711)</td>
<td>1.067 (0.568-2.004)</td>
<td>0.955 (0.702-1.298)</td>
</tr>
<tr>
<td>p-value</td>
<td></td>
<td>0.0447</td>
<td>0.0341</td>
<td>0.8399</td>
<td>0.7679</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.089-1.616)</td>
<td>(1.118-1.574)</td>
<td>(0.362-0.990)</td>
<td>(0.667-1.015)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1.194-1.677)</td>
</tr>
<tr>
<td>Angina</td>
<td>Yes vs. no</td>
<td>1.327 (0.984)</td>
<td>1.326 (0.984)</td>
<td>0.598 (0.238)</td>
<td>0.935 (0.449)</td>
</tr>
<tr>
<td>p-value</td>
<td></td>
<td>0.0050</td>
<td>0.0012</td>
<td>0.0455</td>
<td>0.0030</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.378-3.016)</td>
<td>(0.736-1.316)</td>
<td>(0.058-0.968)</td>
<td>(1.176-2.212)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.836-1.492)</td>
</tr>
<tr>
<td>Cardiovascular disease</td>
<td>Yes vs. no</td>
<td>1.396 (1.148-1.699)</td>
<td>1.123 (0.951-1.327)</td>
<td>0.697 (0.434-1.118)</td>
<td>1.128 (0.929-1.370)</td>
</tr>
<tr>
<td>p-value</td>
<td></td>
<td>0.0009</td>
<td>0.1706</td>
<td>0.1344</td>
<td>0.2239</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.196-1.627)</td>
<td>(1.071-1.403)</td>
<td>(0.476-0.980)</td>
<td>(0.853-1.177)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1.130-1.479)</td>
</tr>
</tbody>
</table>

IDF, International Diabetes Federation; NCEP, National Cholesterol Education Program.

Method: logistic regression model.

MetS by NCEP: metabolic syndrome cases meeting NCEP ATP III criteria.

MetS only by IDF: metabolic syndrome cases meeting by IDF criteria.

MetS only by NCEP: metabolic syndrome cases only meeting by IDF criteria, but not NCEP ATP III criteria.

MetS only by NCEP: metabolic syndrome cases only meeting by NCEP ATP III criteria, but not IDF criteria.

MetS by IDF and NCEP: metabolic syndrome cases meeting both IDF and NCEP ATP III criteria.

Cardiovascular disease: congestive heart failure, angina, myocardial infarction, or prior stroke/transient ischemic attack.
when treating hypertensive patients. The Progetto Iper -
tensione Umbria Monitoraggio Ambulatoriale study,
which included 1,742 initially untreated hypertensive pa-
tients without CVD, recently showed that MetS ampli-
ifies the risk associated with high blood pressure, inde-
pendent of several traditional cardiovascular risk factors.
Over a mean follow-up period of 4.1 years, the presence
of MetS was a significant independent predictor of both
cardiac [hazard ratio (HR) 1.48, 95% CI 1.01-2.27] and
cerebrovascular (HR 2.11, 95% CI 1.27-3.50) events.5
The adverse prognostic value of MetS was attenuated,
but still significant, among hypertensive patients without
diabetes.24

Hypertension occurs more frequently in Asian po-
pulations than in Caucasian populations.10,25 A previous
study revealed that nearly all hypertensive subjects
(91.3%) have at least one cardiovascular risk factor in
addition to the hypertension itself.26 Our study showed a
similar result: 94.35% and 90.75% of subjects had at
least one component of MetS identified by modified
NCEP criteria and revised IDF criteria, respectively.
These consistent findings suggest that a multifactorial
approach to the treatment of hypertension is very im-
portant to reduce the incidence of CVD. In 2005, Hsu et
al.27 reported MetS to be highly prevalent (47.9%) in
Chinese (Taiwanese) hypertensive patients, but patients
in this study were recruited by a single physician from
one tertiary referral center, and the patient population
was not representative. In our study, a high prevalence
of MetS in elderly hypertensive subjects was noted
based on both NCEP and IDF criteria (73.13% and
54.67%). The prevalence was higher in women, and the
sex differential is primarily attributable to a higher pro-
portion of central obesity in women (81.15%) than in
men (62.19%), and a higher proportion of low HDL-C in
women (41.15%) than in men (29.59%). These results
are consistent with those of the previous report by Hsu et
al.27 In addition, central obesity as a prerequisite in the
IDF criteria may explain the lower prevalence of MetS.

In April 2006, He et al.24 reported on MetS in 2,334
elderly Chinese people, and showed that subjects with
MetS, according to either the IDF or the NCEP criteria,
had significantly higher odds of coronary heart disease,
stroke, and peripheral arterial disease. Our results
showed that subjects with MetS defined by NCEP crite-
ría had high odds of AP, MI, stroke, CHF, and all CVD,
and those who met the IDF or both criteria had high
odds of AP, CHF, and all CVDs. Our subjects were all
hypertensive patients, which is the main component of
MetS. Subjects who met NCEP criteria had significantly
higher odds of both cardiac and cerebrovascular diseases.
Participants who met the IDF, but not the NCEP cri-
teria in the previous report24 had significantly elevated
ORs for CHD (1.66, 95% CI 1.31-2.10) and stroke
(1.53, 95% CI 1.13-2.06). Thus, the authors suggested
that the new IDF criteria are more suitable than the
NCEP criteria for screening higher-risk individuals, and
for estimating the risk of CVD from MetS in the Chinese
population.24 However, in our study, the subjects who
met the NCEP but not the IDF criteria had significantly
elevated ORs for MI, but those who met the IDF but not
the NCEP criteria did not have significantly elevated OR
for any CVD and even lower ORs for AP, CHF and all
CVDs. On the contrary, these results indicated that
NCEP criteria more accurately estimated CVD risks and
central obesity seems shouldn’t be requisite component
of MetS in our population. The major differences be-
tween our study and the previous report are: (1) our par-
ticipants were all hypertensive patients; and (2) the sub-
jects in our study included urban and rural populations.
The main strength of our study is that these data are
from a representative sample of Taiwanese adults.
Therefore, these results can be generalized to the hyper-
tensive population of Taiwan 55–80 years of age. Based
on our results, we indicate that NCEP may be better than
IDF criteria for screening older hypertensive individuals
and estimating the risk of CVD from MetS in the Tai-
wanese population. The main limitation of our study is
that it was a cross-sectional study, and because of miss-
ing data on triglycerides, the prevalence of MetS may
have been underestimated. Large-scale prospective stu-
dies are still needed.

CONCLUSION

MetS is highly prevalent in hypertensive patients
55-80 years of age in Taiwan, particularly among
women. Subjects with MetS defined by either criterion
have significantly elevated odds of AP, CHF and all
CVDs. For estimating the risks of cardiovascular dis-
ease, modified NCEP criteria seem to be more suitable
than revised IDF criteria. Programs to enhance efforts aimed at prevention, detection, and treatment of the components of MetS other than hypertension may greatly reduce the future burden of CVD in this population.

CONFLICT OF INTEREST

The authors have no conflicts of interest directly relevant to the contents of this article.

ACKNOWLEDGEMENTS

This study was supported by Merck Co., Taiwan. The authors thank Ya-Chuan Wang and Vivien Chien for their assistance with statistical analysis and data collection.

The authors appreciate the contribution of doctors at each site, as followed: Chiang, Chih-Yen (Cardinal Tien Hospital Yung Ho Branch); Chang, Heng-Chia (Buddhist Xindian Tzu Chi General Hospital); Chang, Hsing-Ya (Wen Gong Memorial Hospital); Chen, Cheng-Yun (Chia-Yi Christian Hospital); Chen, Chi-Li (Maio-Li General Hospital, Department of Health Executive Yuan); Chen, Chung-Hung (Chung-Ho Memorial Hospital, Kaohsiung Medical University); Cheng, Hsien-An (Yuan’s General Hospital) Chen, Jung-Sheng (Chu Shang Show Chwan Hospital); Chou, Li-Ping (Sin Lau Hospital, The Presbyterian Church of Taiwan); Chou, Tzy-Wei (Da Chien General Hospital); Chu, Yung-Hua (Taichung Hospital, Department of Health, Executive Yuan); Fang, Chih-Yuan (Chang Gung Memorial Hospital Kaohsiung Branch); Guo, Bih-Fang (Chang Gung Memorial Hospital Kaohsiung Branch); Hong, Sen-Chu (Shu-Lin Ren-Ai Hospital); Hsia, Chih-Ping (Kunag Tien General Hospital); Hsu, Kuang-Nan (Mackay Memorial Hospital Taitung Branch); Hsu, Yi-Chen (Tao Shin Hospital); Huang, Shih-Chung (Kunag Tien General Hospital); Huang, Wen-Pin (Cheng Hsin Rehabilitation Medical Center); Ke, Teng-Yao (Kaohsiung Municipal Min-Sheng Hospital); Khor Gim-Thean (Chung-Ho Memorial Hospital, Kaohsiung Medical University); Ko, Yu-Lin (Buddhist Xindian Tzu Chi General Hospital); Lee, Chao (Da-Li Jen-Ai Hospital); Lee, Jiann-Der (Chang Gung Memorial Hospital); Liao, Zhi-Guan (Cathay General Hospital); Lin, Chun Liang (Lo-Tung Pohai Hospital); Lin, Hsiu-Fen (Chung-Ho Memorial Hospital, Kaohsiung Medical University); Lin, Jih-Min (Keelung Hospital, Department of Health Executive Yang); Lin, Min-Ren (Tainan Hospital, Department of Health, Executive Yuan); Lin, Ruey-Tay (Chung-Ho Memorial Hospital, Kaohsiung Medical University); Lin, Zi-Xing (Lin Shin Hospital); Liu, An-Bang (Buddhist Tzu Chi General Hospital); Liu, Chung-Hsian (China Medical University Hospital); Liu, Yan-Ming (Chutung Veterans Hospital); Lo, Hung-Shun (Cathay General Hospital); Po, Helen L. (Mackay Memorial Hospital); Ueng, Kwo-Chang (Chung Shan Medical University Hospital); Wang, Xin-Fan (Tung’s Taichung Metro-Harbor Hospital); Wu, Jung-Chou (PingTung Christian Hospital); Yang, Ping-Chang (Pao Chien Hospital); Yeh, Hung-I (Mackay Memorial Hospital).

REFERENCES

Metabolic Syndrome in Hypertensive Patients in Taiwanese Population